COLEGIO AGUSTINIANO CIUDAD SALITRE
AREA DE TECNOLOGIA E INFORMATICA
GRADO SEGUNDO

INTRODUCCION A LA PROGRAMACION.

- J5

1. LENGUAJE DE PROGRAMACION ROBOMIND.

Para facilitar la comprensién de las técnicas y mecanismos de programacion, en este curso se estudiara el
lenguaje ROBOMIND. Robomind es un lenguaje que permite programar robots méviles. Se trata de un lenguaje
muy sencillo, con un juego de instrucciones muy simple, pero que empela las mismas estructuras de
programacién que cualquier otro lenguaje de programacién. Por todo ello es un lenguaje muy adecuado para
introducir a los estudiantes de grado segundo en el complejo mundo de la programacion.

Como ya se ha dicho, Robomind es un lenguaje que permite
controlar robots moviles. En nuestro caso, no dispondremos
de robots “reales” cuyo funcionamiento controlar. Sin
embargo, el entorno de programaciéon Robomind ofrece un
“robot movil virtual” que simula el comportamiento de un
robot real en la pantalla del ordenador. Nuestra tarea sera
programar dicho robot virtual para controlar su
funcionamiento.

Como introduccion, se pueden ver unos videos que
describen las posibilidades basicas de RoboMind:

http://www.robomind.net/en/demo.html ==
http://www.robomind.net/en/demoNewInTwo.html

http://www.robomind.net/en/demo.html
http://www.robomind.net/en/demoNewInTwo.html

2. EL ROBOT VIRTUAL ROBOMIND.

A continuacion se muestra el robot que se programara en RoboMind. Se trata de
un robot moévil equipado con los varios dispositivos que le permiten moverse, mirar
alrededor, coger objetos, y pintar.

» Sensores: para captar informacion del exterior, el robot dispone de uan
videocamara, que usara como sensor de sensor de contacto o de
presencia, y como sensor de color.

» Actuadores: los actuadores permiten al robot realizar acciones.
— Motores y ruedas: permiten al robot moverse
— Brazo: permite al robot recoger objetos (balizas = beacons).
— Brocha: permite al robot dibujar en color blanco o negro.

| [_3

NEEEE
)L A
E

Moverse. Pintar.

El programa de control se encargara de definir el comportamiento del robot. El programa de control
debera leer la informacién que los sensores capten del entorno (fase de entrada), interpretar y manipular dicha
informacion (fase de proceso), y modificar el comportamiento de los actuadores en funcién de las decisiones
tomadas al procesar los datos captados (fase de salida).

3. EL ENTORNO DE TRABAJO ROBOMIND.

Para programar el robot mévil virtual de RoboMind se utiliza un sencillo lenguaje de programacion, que servira
de aprendizaje a las técnicas de programacion.

¢ Coémo programar el robot RoboMind? La secuencia de trabajo es siempre la misma:
1) Escribir el programa de control.

2) Descargar el programa de control al robot, para definir su comportamiento.
3) Elrobot ejecuta el programa de control.

© RoboMind

2. Escribir el
programa
de control.

1. Descargar el
programa al
robot.

Sl vooruit(2)

ocedure draa

3. El robot ejecuta
el programa de
control.

Ejemplo:

El siguiente programa de control hace que el robot realice un recorrido con forma de cuadrado. Escribelo en el
area de programacion, descarga el programa, y observa el resultado.

forward(1l)
right()
forward(l)
right()
forward(1l)
right()
forward (1)
right()

4. EL LENGUAJE DE PROGRAMACION ROBOMIND.

Para hacer que una maquina, un ordenador o un robot funcionen, hay que darle 6rdenes o instrucciones.

Ejemplos:
» Para un video: play, pause, record, fast forward (FF), etc.
» Para un procesador de textos (Word): Poner texto en negrita, insertar imagen, copiar, pegar, etc.

Pues bien, para programar el robot virtual Robomind también se dispone de un conjunto de instrucciones que
permiten gobernarlo. Estas instrucciones se le proporcionaran una tras otra, hasta escribir el programa de
control con la secuencia de 6rdenes que se desea que el robot realice.

El lenguaje de programacién RoboMind incorpora el conjunto de instrucciones y estructuras de programacion
gue permitiran escribir los programas de control para dirigir el funcionamiento del robot.

Move See Paint Grab

A continuacion, se revisaran paso a paso el conjunto de instrucciones y estructuras de programacion
disponibles en RoboMind.

5.1.- INSTRUCCIONES DE MOVIMIENTO.

Las instrucciones de movimiento controlan los motores del robot, y por tanto, el movimiento del motor.

MOVIMIENTO

forward(n) @ Avanzar n pasos.

backward(n) Retroceder n pasos.

left() <::|] Girar 90° a la izquierda.

right() Girar 90° a la derecha.
north(n) Orientarse al norte y avanzar n pasos.
south(n) Orientarse al sur y avanzar n pasos.
east(n) Orientarse al este y avanzar n pasos.
west(n) Orientarse al oeste y avanzar n pasos.

Actividades “movimiento del robot”. IMPORTANTE:
Antes de empezar, acude a la carpeta:

Programa 1) Programa al robot para que llegue a la casilla a la C:\Archivos de programa\RoboMind\scripts\en

izquierda de la baliza del sur. Al llegar a dicha posicion, el
robot se para. Guarda el programa en tu carpeta de trabajo

como progL.irobo. Borra todos los archivos que encuentres en

dicha carpeta.

— e
u "
maps.rar Scripts.rar

Programa 2) Programa al robot para llevarlo hasta la casilla frente la baliza del nordeste. Al llegar a dicha
posicion, el robot se para. Guarda el programa en tu carpeta de trabajo como prog2.irobo.

Programa 3) Programa al robot para que trace un recorrido en forma de rectangulo, de altura 3 unidades y
anchura 6 unidades. EIl robot termina de trazar el rectangulo en su posicion inicial, donde se para. Guarda el
programa en tu carpeta de trabajo como prog3.irobo.

X S posicidn inicial.

< »
< »

6

Programa 4) Escribe un programa que lleve al robot al sendero blanco y lo fuerce a recorrerlo. El robot
se parara en la Ultima casilla del sendero blanco. Guarda el programa en tu carpeta de trabajo como
prog4.irobo.

Programa 5) Abre el mapa “verticalLines1.map” (File <@ Open Map). Escribe un programa que lleve al
robot alpunto negro. El robot sélo puede pisar en las casillas blancas. Guarda el programa en tu carpeta de
trabajo como prog5.irobo.

2.2.- INSTRUCCIONES PARA PINTAR Y RECOGER OBJETOS.

Estas instrucciones controlan la brocha y el brazo del robot. Permiten pintar lineas y recoger objetos (balizas).

PINTAR
paintWhite() 3—1 Bajar la brocha con pintura blanca al suelo para pintar en blanco.
paintBlack() h Bajar la brocha con pintura negra al suelo para pintar en negro.

stopPainting() -!'3 Dejar de pintar. Esconder la brocha.

COGER

pickUp() !"'u; Coger la baliza situada frente al robot.

putDown() ‘.‘\ Soltar la baliza y dejarla frente al robot.
(8

Actividades “pintar y recoger”.

Programa 6) Abre el mapa “default.map”. Escribe un programa para mover la baliza localizada al sudeste del
robot a la esquina sudoeste del mapa. Guarda el programa en tu carpeta de trabajo como prog6.irobo.

Programa 7) Escribe un programa para que el robot dibuje una escalera blanca con 3 escalones, como la
mostrada en la imagen inferior. Guarda el programa en tu carpeta de trabajo como prog7.irobo.

Programa 8) Abre el mapa “goRightAtWhite.map”.

Escribe un programa mediante el cual el robot rodee la caja
de madera situada a su derecha, mientras va pintando el
contorno de negro. Después, el robot vuelve al punto inicial.
Guarda el programa en tu carpeta de trabajo como
Prog8.irobo.

* Programa 9) Abre el mapa “openArea.map”.
Escribe un programa para que el robot escriba las iniciales de tu
nombre y apellidos (3 letras).

Debes respetar los espacios en blanco entre cada inicial. Guarda
el programa en tu carpeta de trabajo como prog9.irobo.

Programa 10) Abre al mapa “passBeacons.map”. Escribe un programa para conseguir que el robot llegue
hasta el punto blanco. Para ello, el robot debera coger y retirar las balizas del pasillo que lleva al objetivo.
Guarda el programa en tu carpeta de trabajo como prog10.irobo.

E
’

o)

.:‘:M.‘*»‘ 52 el S 5 el

Vg P e gl I 168+ e TN 1 Il ¢ el B el

5.3.- INSTRUCCIONES DE VISION Y DE ALEATORIEDAD.
INSTR IONES DE VISION.,
Las instrucciones de vision controlan las videocamaras con las que el robot virtual es capaz de “ver’. Las

videocamaras actlan como sensores, que permitirdn al robot detectar la presencia de obstaculos (paredes,
cajas, etc.), detectar la presencia de balizas (objetos que puede recoger), y detectar colores en el suelo.

VISION
IZQUIERDA EN FRENTE DERECHA
leftIsObstacle() frontIsObstacle() rightIsObstacle()
leftIsClear() frontIsClear() rightIsClear()
leftIsBeacon() frontIsBeacon() rigthIsBeacon()
leftIsWhite() frontIsWhite() rightIsWhite()
leftIsBlack() fontIsBlack() rightIsBlack()

Ejemplo 1: leftisObstacle <& permite determinar si a la izquierda hay un obstaculo.

Ejemplo 2: rightlsBlack <& permite determinar a la derecha hay una casilla pintada de negro.
Ejemplo 3:frontlsClear © permite determinarsialfrente estadespejado de obstaculos (clear=despejado).
Ejemplo4:leftisBeacon @ permitedeterminarsienlacasilladelaizquierdahayunabaliza (beacon = hez)

INSTRUCCIONES DE ALEATORIEDAD,

La instruccion de aleatoriedad permite al robot lanzar una moneda al aire para realizar una eleccion aleatoria (ir
a la derecha o a la izquierda, al este o al oeste, pintar de negro o de blanco, etc.).

TOMA DE DECISIONES ALEATORIAS

Lanzar una moneda al aire para tomar una decision
flipCoin() aleatoria. El resultado puede ser cara (TRUE) o cruz
(FALSE) con una probabilidad del 50%.

5.4.- ESTRUCTURAS DE PROGRAMACION (1).

Ademés de las instrucciones, el lenguaje RoboMind proporciona ciertas estructuras de programacién que
permiten un mayor control sobre el robot virtual. Estas estructuras permiten ejecutar un conjunto de
instrucciones varias veces (bucles o estructuras repeat), 0 ejecutar un conjunto de instrucciones soélo si se
cumple una condicion (condicionales o estructuras if-else).

5.4.1. - BUCLES (REPEAT Y REPEAT-WHILE).
repeat (n) {instrucciones }

Esta estructura permite repetir la ejecucién de las instrucciones entre llaves un numero ‘n’ de veces.
NOTA: Si se omite el parametro n, se repetiran las instrucciones entre llaves indefinidamente <& por tanto, 9

se quiere que una serie de instrucciones se estén ejecutando siempre hay que usar repeat().

Ejemplo: escribe y ejecuta el siguiente programa:
a) ¢Para qué sirve?

j0ue hace el programa?

repeat (4)
{
forward(2)
b) Explica su funcionamiento. B backward(2)

repeatWhile (condicién) { instrucciones }

Esta estructura repite (repeat) la ejecucion de las instrucciones entre llaves mientras (while) la condicion que
evalla sea verdadera. Si la condicién no se hace verdadera, o deja de ser verdadera, continGia ejecutando la
instruccién tras la llave que cierra el bucle.

NOTA: Las condiciones que utiliza el estructura repeatWhile suelen ser instrucciones de vision (leftisObstacle(),
frontisBeacon(), rightlsClear(), etc.).

Ejemplo: escribe y ejecuta el siguiente programa:
a) ¢Para qué sirve?

j0ué hace el programa?

repeatWhile (frontIsClear(}))
{

forward{l)

b) Explica su funcionamiento.

break

Esta instruccién termina con la ejecucion del bucle (“rompe” el bucle), y continua ejecutando la instruccién que
sigue a la llave que cierra el bucle. Sirve para forzar la salida de un bucle.

De momento no usaremos esta instruccién, pero serd muy Util en cuanto veamos las estructuras condicionales.
Cuestiones “bucles”.

Programa 11) Reescribe el programa que hace que el robot trace un cuadrado, pero utilizando un bucle. Guarda
el programa en tu carpeta de trabajo como progll.irobo.

forward(l)
right () ‘_>
forward(l)

right()

forward(l) "
right() " 1o]

fc_>rward (1) I3 <
right()

ﬁ Programa 11b) Programa ahora al robot para que permanezca trazando cuadrados de forma indefinida.
Necesitaras un bucle infinito repeat().Guarda el programa en tu carpeta de trabajo como progllb.irobo.

Programa 12) Buscando el limite: haz que el robot avance hasta que encuentre un obstaculo. Cuando lo
encuentre, debe retroceder una posicion. Ejecuta el mismo programa en varios mapas, debe funcionar
cualquiera que sea el entorno (File <© Open map). Guarda el programa en tu carpeta de trabajo @o
progl2.irobo.

Programa 13) Haz un programa que, utilizando un bucle, haga que el robot dibuje una escalera de 4 escalones.
Ayudate del esquema que se te proporciona a continuacién para escribir tu programa. Guarda el programa en tu
carpeta de trabajo como progl3.irobo.

empezar a pintar

-2

repeat (4)
{

dibujar un sdlo escalon

}

dejar de pintar

=] M s

Programa 14) Vuelve a realizar el programa 10. En este caso, el proceso de coger y retirar cada baliza del
camino lo realizaras mediante un bucle. Guarda el programa en tu carpeta de trabajo como progl4.irobo.

Programa 15) Abre el mapa copyLinel.map. Crea un programa que haga que el robot camine paralelo a la linea
negra que tiene a su izquierda. El robot debe avanzar paralelo a la linea negra mientras haya linea negra.
Guarda el programa en tu carpeta de trabajo como prog15.irobo.

Programa 15b) Robot bordeador: programa al robot para que llegue a la caja, y una vez alli se ponga a bordear
la caja de forma indefinida. Guarda el programa en tu carpeta de trabajo como progi15b.irobo.

ﬁ Programa 15c¢) Robot bailén. Mediante un bucle que se repita de forma indefinida, programa al robot
virtual para que “baile” (bailar sera moverse girar la cabeza). Guarda el programa en tu carpeta de trabajo como
progl5c.irobo.

Pista: Usa leftisClear() y rightlsClear() para mover la cabeza del robot, y simular que baila.

5.4.2.- SENTENCIAS CONDICIONALES (IF - ELSE).

Las estructuras condicionales permiten condicionar la ejecucién de ciertas instrucciones al cumplimiento de una
condicion. Con ello se puede hacer que ciertas instrucciones no se ejecuten siempre, sino sélo en caso de que
se den ciertas circunstancias.

if (condicion) {instrucciones}

Ejecutara las condiciones entre llaves, Unicamente si la condicién se cumple, en caso contrario ejecuta la
instruccién que sigue a la llave que cierra la sentencia if.

Ejemplo: escribe y ejecuta el siguiente programa:
a) ¢Para qué sirve?

repeat ()
{
foxrward(l)
if {(frontIsBeacon(})

b) Explica su funcionamiento. {

pickup()

if (condicién) { instrucciones }
else { instrucciones }

Sila condicién se cumple, se ejecutan las instrucciones del bloque if. En cambio, si la condiciéon no se cumple
se ejecutaran lasinstrucciones pertenecientes al bloque else. (If & si(condicional); else <& sino)

Es decir:
Si (ocurre esta condicion) { haz estas instrucciones }
Si no { haz estas otras instrucciones }

Ejemplo: escribe y ejecuta el siguiente programa:

o repeat ()
a) ¢Para que sirve?

{

if (frontIsohstacle{})
{right ()}

else

b) Explica su funcionamiento. (Forward(1)}

o B BEn Bin B Beo Bra B

end

La instruccion end (fin) fuerza el final del programa. Cuando el robot ejecuta esta instruccion se termina el
programa.

Actividades “sentencias condicionales”.

* Programa 15d) robot borracho. Abre el mapa openArea.map. Crea un programa para que el robot
avance de forma indefinida (repeat()), cambiando de direccion constantemente y de formaaleatoria.

Para cambiar de direccion aleatoriamente el robot debera decidir al azar si gira a derechas (right()) o a
izquierdas (left()) cada vez que avanza, mediante la funcion flipCoin(). Esto se consigue de esta forma:

if (flipCoin()) Si (sale cara)
{haz esto} {haz esto}
else Si no —si sale cruz—
{haz esto otro} {haz esto otro}

/4

Guarda el programa en tu carpeta de trabajo como prog15d.irobo.
NOTA: Este programa es para practicar el uso de la instruccion flipCoin(). Este concepto debe quedar claro.

Programa 16) Seguir las marcas blancas.
En el mapa goRightAtWhitel.map encontraras una serie de marcas blancas.

ik
1
&3
!
1
ol
3

|
i3

5l 1 B Il 5 5

10

Escribe un programa que haga al robot ir de una a otra marca. Para ello debes hacer avanzar paso a paso al
robot hasta que encuentre una marca blanca al frente, y al encontrarla debe dirigirse hacia la siguiente. El
recorrido terminard recogiendo la baliza del final del circuito.

Escribe el programa que hace esta tarea, asegurandote que funciona para los mapas goRightAtWhitel,
goRightAtWhite2 y goRightAtWhite3. Guarda el programa en tu carpeta de trabajo como progl6.irobo.

Programa 17) Robot copidn: en el mapa copyLinel.map hay una linea negra a la izquierda del robot. El objetivo
de este programa copiar la linea negra, dibujando una linea blanca de igual longitud a la derecha del robot. Haz
el programa de forma que se ejecute correctamente incluso si no sabes el tamafio de la linea negra a priori.
Guarda el programa en tu carpeta de trabajo como progl7.irobo.

Programa 18) Esquivar objetos aislados: Abre el nada avoidObstacles.map. Escribe un programa para que el
robot avance esquivando los objetos que tiene delante, hasta llegar al punto blanco (meta). El programa debe
funcionar para los mapas avoidObstacles, avoidObstaclesl y avoidObstacles2. Guarda el programa en tu
carpeta de trabajo como prog18.irobo.

* Programa 19) Esquivar objetos aislados y retirar balizas: modifica el programa anterior para que si el
robot encuentra una baliza, en vez de esquivarla, la recoja y la deje a un lado. Guarda el programa en tu
carpeta de trabajo como prog19.irobo.

Programa 20) Esquivar objetos continuados: Basandote en el ejercicio 18 programa al robot para que sea
capaz de sortear objetos continuados (uno a continuacién de otro). Deberas utilizar la vision lateral para ver
cuando finaliza el obstaculo. Guarda el programa en tu carpeta de trabajo como prog20.irobo. Mapa:
avoidContinuousObstacles.map.

Programa 21) Aparcando. Abre el mapa findSpot1.map. Programa al robot para que “aparque” en el hueco
marcado con una sefial blanca. Guarda el programa en tu carpeta de trabajo como prog2l.irobo. El mismo
programa también debe funcionar para el mapa findSpotl.map.

* Programa 22) Robot evita-obstaculos. Programa un robot mévil que avance por el mapa de forma
autébnoma. Cuando en su avance detecte la presencia de un obstaculo (muro, caja, baliza, planta, agua,
etc.), debe evitarlo cambiando de direccién aleatoriamente (flipCoin()).Guarda el programa en tu carpeta de

11

trabajo como prog22.irobo

Programa 22b) Marcando colisiones: crea un programa que haga que el robot avance. Si el robot detecta un
obstaculo, marca la colisibn con un punto negro, y gira aleatoriamente para evitar el obstaculo. Guarda el
programa en tu carpeta de trabajo como prog22b.irobo. Usa el mapa default.map.

ﬁ Programa 23) Busca-balizas: programa al robot para buscar balizas. Para ello debe recorrer
autdbnomamente y de forma aleatoria el mapa default. map. Cuando encuentra una baliza, debe cogerlay
detenerse. Guarda el programa en tu carpeta de trabajo como prog23.irobo

5.4.3.- EXPRESIONES LOGICAS. OPERADORES LOGICOS.

Las condiciones a evaluar en las sentencias if y repeatWhile se denominan expresiones ldgicas. Tal expresion
sera un valor verdadero si se cumple, o falso si no se cumple (TRUE o FALSE).

Una expresion logica puede ser simple o compuesta:

» Expresion logica simple:

repeatWhile Ejemplo: frontisClear().

{
El robot avanzara mientas al frente esté despejado de

obstéculos.
> Expresion légica compuesta: esta formada por varias
expresiones logicas simples, unidas por los operadores

forward(l)

l6gicos NOT, AND, OR.

repeatWhile CrontIsClear(}) and leftIsClear(p EjempIO: frontIsCIear() and IeftIsCIear()

{ L)

El robot avanzara mientras al frente esté
despejado y a la izquierda también esté
despejado (y = and)

forwardi(l)

OPERADORES LOGICOS

N° DE EXP. LOGICAS

OPERADOR | NOTACION ALTERNATIVA SIMPLES QUE OPERA

EXPLICACION

NO: Niega el valor de la expresion

not ~ (ALT + 126) 1 lbgica que le sigue.

Y: Resulta verdadero si las dos
and & 2 expresiones logicas lo son, y falso si
alguna de las dos o ambas son falsas.

O: Resulta verdadero si una de las
or | 2 dos expresiones ldgicas lo es, y falso
s6lo si ambas son falsas.

NOT AND OR
Exp1 Exp1 | Exp1 AND Exp2 Exp1 Exp1 Exp1 OR Exp2
Exp | NOT (exp) FALSE | FALSE FALSE FALSE | FALSE FALSE
TRUE | FALSE FALSE | TRUE FALSE FALSE | TRUE TRUE
FALSE TREUE Toie | EalcE == Toiie [EAlSE =TI
TRUE | TUE TRUE TRUE | TUE TRUE

Ejemplol: not frontisWhite() <& sera verdadera si al frente NO se detecta color blanco.

Ejemplo2: frontlsClear() and leftlsBlack() <© ser& verdadera si al frente esta despejado Y a la izquierda
detecta negro (es decir, sera verdadera solo si se cumplen ambas expresiones simples)

Ejemplo3: frontlIsWhite or frontlsBlack() <G sera verdadera si al frente se detecta blanco O se detecta negro
@&decir, sera verdadera s6lo con que se cumpla una de las expresiones)

Actividades finales.

* Programa 24) Enjaulado. Abre el mapa roboCage.map. Veras que el robot se encuentra dentro de un

recinto limitado por una linea negra. Programa al robot para que se mueva aleatoriamente dentro de
este recinto, pero sin poder abandonarlo (el robot se movera encerrado en el recinto de la linea negra). Guarda
el programa en tu carpeta de trabajo como prog24.irobo.

Programa 25) Cédigo de colores. Abre el mapa colorCode.map. Los puntos blancos simbolizan girar a la
derecha y avanzar, mientras que los negros girar a la izquierda y avanzar. Dota de la inteligencia necesaria a tu
robot para que encuentre y coja la baliza escondida siguiendo las pistas situadas en el suelo. Guarda el
programa en tu carpeta de trabajo como prog26.irobo.

Haz que tu robot sigua un camino trazado en el suelo basandose en el siguiente cédigo de circulacion:
a) Un punto blanco significara que en la siguiente bifurcaciéon se tome el camino de la derecha.
b) Un punto negro significara que en la siguiente bifurcacion se tome el camino de la izquierda.
Las indicaciones de trafico se situaran en la casilla de la bifurcacion.
El programa termina cuando el robot llega a la baliza y la recoge. Guarda el programa en tu carpeta de trabajo
como Prog27.irobo.

13

* Programa 27) Robot rastreador. Abre el mapa default.map. Realiza un programa para conseguir un
robot rastreador de linea blanca. El robot se detendra al final de la linea blanca al detectar una pared.
Guarda el programa en tu carpeta de trabajo como prog24.irobo.

Programa 28) Laberinto: Abre el mapa mazel.map. El objetivo del programa es conseguir que el robot
escape del laberinto de forma auténoma. El robot encuentra la salida al localizar y coger la baliza,
terminando el programa. Guarda el programa en tu carpeta de trabajo como Prog28.irobo.
Pista: Para salir de un laberinto basta con seguir siempre la pared de la derecha, o la pared de la izquierda.

14

